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1 Introduction

The double pendulum, a system governed by classical mechanics, exhibits chaotic behavior, prompt-

ing a thorough examination of its dynamics in this essay. The system is sensitive to initial conditions,

hence, a microscopic change in its initial conditions makes the difference between periodic and chaotic

trajectories. To find out how different drop angles influence the chaotic behavior, we first derive the

simulation for the double pendulum. Then, we will examine the Lyapunov exponent, an indicator of

chaos, and derive the Lyapunov exponent for different initial conditions of the double pendulum. The

result is a heatmap that outlines the relationship between the drop angles and chaos in a double pen-

dulum. Notably, it also uncovers stable, periodic orbits at high-angle drops of the double pendulum.

Ultimately, there is a trend that higher drop angles yield more chaos, but the irregular trends that

emerge from the analysis serve as a testament to the double pendulum’s inherently chaotic nature.

2 Chaos Theory

We begin by learning the background of chaos theory. This branch of mathematics deals with the

irregular and unpredictable motions of nonlinear systems. At its core is the butterfly effect, which

states that small changes in initial conditions lead to large changes in results. To understand its

origins, we explore the story of Edward Lorenz, the founder of chaos theory, and how he discovered

chaos, as recounted in [Bradley, 2010].

2.1 The Butterfly Effect

Edward Lorenz, a meteorologist, pioneered the study of chaos theory through his work on weather

simulation. While rerunning a simulation, Lorenz truncated initial values from six decimal places to

three, expecting negligible differences. However, the output diverged significantly from the original

results. Initially suspecting a machine error, Lorenz discovered that the discrepancy stemmed from

the minute rounding differences in initial conditions.
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This finding illustrated the core concept of chaos theory: sensitivity to initial conditions. Even

infinitesimal differences in the starting state of a system can yield drastically distinct outcomes over

time. This phenomenon has come to be known as the “butterfly effect,” which poetically suggests that

the flap of a butterfly’s wings in Brazil could change the initial conditions in a way that leads to a

hurricane in Texas [Bradley, 2010].

2.2 Defining Chaos

The concept of sensitivity to initial conditions was a foundational element in defining chaos. Over

time, a widely accepted definition of chaos emerged: “Chaos is aperiodic long-term behavior in a

deterministic system that exhibits sensitive dependence on initial conditions.” [Strogatz, 2018]. Let us

define the three important aspects in this definition.

• Aperiodic Long-term Behavior: Trajectories do not settle down to fixed points or periodic

orbits. It implies a lack of repetitive patterns or cycles over an extended period.

• Deterministic: The system is not random; given the same inputs, it will always yield the same

outputs.

• Sensitive Dependence on Initial Conditions: Differences in the initial conditions, no matter

how small, will lead to drastically different results.

The third condition here is the key to identifying chaos. The crucial takeaway from this section

is that the degree of sensitivity is directly tied to the degree of chaos exhibited by a system. Moving

forward, the measure of chaos will be based on this concept. Building upon this understanding, we

will now shift our focus to a system that exhibits chaotic behavior: the double pendulum.

3 Derivation of A Double Pendulum

The double pendulum consists of two simple pendulums connected in series. This section derives

the simulation of the double pendulum. The double pendulums in this essay will strictly be simple
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double pendulum systems, which are systems with point masses connected by rigid, massless rods,

ignoring friction. Figure 1 shows the variables involved in the double pendulum.

θ1

θ2

l1

m1

m2

l2

Figure 1: The double pendulum, and the variables involved.

The next subsection aims to derive the equations of motions that are necessary to simulate a double

pendulum, based on the methodology presented in [González, 2006].

3.1 Equations of Motion

First, we use trigonometric principles with l1 as the origin, we express the x and y coordinates of

each mass as functions of θ1 and θ2. Note that the positive direction along the y-axis is defined as
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upward.

x1 = l1 sin(θ1) (3.1)

y1 = −l1 cos(θ1) (3.2)

x2 = l1 sin(θ1) + l2 sin(θ2) (3.3)

y2 = −l1 cos(θ1) − l2 cos(θ2) (3.4)

Differentiate with respect to time, use the chain rule, to derive the angular velocity in each direction.

The notation ẋ represents the time derivative of x, that is, ẋ = dx
dt .

ẋ1 = l1 cos(θ1)θ̇1 (3.5)

ẏ1 = l1 sin(θ1)θ̇1 (3.6)

ẋ2 = l1 cos(θ1)θ̇1 + l2 cos(θ2)θ̇2 (3.7)

ẏ2 = l1 sin(θ1)θ̇1 + l2 sin(θ2)θ̇2 (3.8)

Next, derive the Lagrangian, denoted by L. This value is the difference between kinetic energy (T )

and potential energy (U).

L = T − U (3.9)

The formula for the kinetic energy of an object with mass m and velocity v is 1
2mv2. Mass m

is known, and v can be expressed as the sum of the ẋ and ẏ components. Thus, we substitute the

expressions for ẋ1, ẏ1, ẋ2, and ẏ2 from equations (3.5) through (3.8) into the kinetic energy equation

for both masses. Sum them to get the kinetic energy of the entire system. Lastly, expand and collect

like terms to obtain:

T =
1

2
m1v

2
1 +

1

2
m2v

2
2

=
1

2
m1(ẋ2

1 + ẏ21) +
1

2
m2(ẋ2

2 + ẏ22)

=
1

2
m1ℓ

2
1θ̇

2
1 +

1

2
m2

(
ℓ21θ̇

2
1 + ℓ22θ̇

2
2 + 2ℓ1ℓ2θ̇1θ̇2 cos(θ1 − θ2)

)
(3.10)
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As for the potential energy of the system, it is the sum of the gravitational potential energies of

each mass, given by mgh, where h is the y component. Expand by referring to angular expressions,

and collect the like terms of this expression.

U = −m1gy1 −m2gy2

= −m1gl1 cos θ1 −m2g(l1 cos θ1 + l2 cos θ2)

= −(m1 + m2)gl1 cos θ1 −m2gl2 cos θ2 (3.11)

Substituting equations 3.10 and 3.11 into equation 3.9, we obtain the Lagrangian:

L = T − U

=
1

2
(m1 + m2)l21θ̇

2
1 +

1

2
m2l

2
2θ̇

2
2 + m2l1l2θ̇1θ̇2 cos(θ2 − θ1)

+ (m1 + m2)gl1 cos(θ1) + m2gl2 cos(θ2) (3.12)

We can now use the Lagrangian we have obtained to solve for the angular accelerations θ̈1 and θ̈2

using the Euler-Lagrangian. The Euler-Lagrangian states that the rate of change of a partial derivative

of the Lagrangian with respect to a generalized coordinate (an angle in our case) and its time derivative,

minus the partial derivative of the Lagrangian with respect to the generalized coordinate, is equal to

zero. This can be expressed mathematically as:

0 =
d

dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1
(3.13)

Let us first solve ∂L
∂θ̇1

. Substitute the values obtained for L and θ̇1, then use the term-wise differ-

entiation.

∂L

∂θ̇1
= (m1 + m2)l21θ̇1 + m2l1l2θ̇2 cos(θ2 − θ1) (3.14)

Take the time derivative to solve for d
dt

(
∂L
∂θ̇1

)
. Use term-wise differentiation for the first term, and the

product rule followed by the chain rule for the second term.

d

dt

(
∂L

∂θ̇1

)
= (m1 + m2)l21θ̈1 + m2l1l2θ̈2 cos(θ2 − θ1)

−m2l1l2θ̇
2
2 sin(θ2 − θ1) + m2l1l2θ̇1θ̇2 sin(θ2 − θ1) (3.15)
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Lastly, we take the partial derivative of the Lagrangian with respect to θ1.

∂L

∂θ1
= m2l1l2θ̇1θ̇2 sin(θ2 − θ1) − (m1 + m2)gl1 sin(θ1) (3.16)

Substituting the expressions for ∂L
∂θ̇1

, d
dt

(
∂L
∂θ̇1

)
and ∂L

∂θ1
into (3.13), we obtain one of the equations of

motion.

0 = (m1 + m2)l21θ̈1 + m2l1l2θ̈2 cos(θ2 − θ1)

−m2l1l2θ̇
2
2 sin(θ2 − θ1) + (m1 + m2)gl1 sin(θ1) (3.17)

Take a similar approach for θ2 to get the other equation of motion. Begin with the Euler-Lagrangian

for θ2.

0 =
d

dt

(
∂L

∂θ̇2

)
− ∂L

∂θ2
(3.18)

Again, to solve for the first term, take the partial derivative of the Lagrangian with respect to θ̇2.

Then, take the time derivatives, followed by the chain rule.

∂L

∂θ̇2
= m2l

2
2θ̇2 + m2l1l2θ̇1 cos(θ2 − θ1) (3.19)

d

dt

(
∂L

∂θ̇2

)
= m2l

2
2θ̈2 + m2l1l2θ̈1 cos(θ2 − θ1)

+ m2l1l2θ̇
2
1 sin(θ2 − θ1) −m2l1l2θ̇1θ̇2 sin(θ2 − θ1) (3.20)

The term ∂L
∂θ2

is again the partial derivative of the Lagrangian with respect to θ2.

∂L

∂θ2
= −m2l1l2θ̇1θ̇2 sin(θ2 − θ1) −m2gl2 sin(θ2) (3.21)

Combining these equations together, we obtain the second equation of motion.

0 = m2l
2
2θ̈2 + m2l1l2θ̈1 cos(θ2 − θ1)

+ m2l1l2θ̇
2
1 sin(θ2 − θ1) + m2gl2 sin(θ2) (3.22)

We have now derived both equations of motion for the double pendulum in equations 3.17 and

3.22. However, they are not useful in the form they are currently in. They are second-order differential

equations, describing the angular accelerations of the system. To simulate the double pendulums,

additional work needs will be done with numerical integrators.
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3.2 Numerical Integration Methods

Numerical integrators approximate the evolution of a system, given initial conditions and differential

equations [Cheever, 1997]. Understanding these play a crucial role in the construction of the simulation,

as well as evaluating the correctness of it. This subsection will first cover Euler’s method to provide

an understanding of numerical integrators, followed by the fourth-order Runge Kutta, which will

eventually be implemented for its greater accuracy.

Euler’s Method

Euler’s method is the simplest form of a numerical integrator. It uses the slope of the differential

equation at the current time step to predict the state at the next time step [Cheever, 1997]. So for a

differential equation described by dy
dt = f(y(t), t), the Euler’s method is

y∗(t + h) = y∗(t) + f(y(t), t) · h (3.23)

Where, y∗(t) represents a function that estimates the state of the system at the time t, and h is the

step size used to advance the time by h units. Figure 2a illustrates how Euler’s method approximates

the exact solutions.

Fourth-Order Runge-Kutta (RK4)

RK4 is a more accurate numerical integrator, estimating the slope by taking a weighted average of

four slopes at different points. This is described by

y∗(t + h) = y∗(t) +
k1 + 2k2 + 2k3 + k4

6
h (3.24)
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Where

k1 = f(y∗(t), t)

k2 = f

(
y∗(t) +

k1h

2
, t0 +

h

2

)
k3 = f

(
y∗(t) +

k2h

2
, t0 +

h

2

)
k4 = f (y∗(t) + k3h, t0 + h)

The RK4 is a popular choice due to its balance between accuracy and computational demands

[D’Alessio, 2023]. Figure 2b outlines how it works. Notice that there is less error, hence, it will be the

numerical integrator we will use.

(a) Euler’s method of numerical integration. (b) Fourth-Order Runge-Kutta integration.

Figure 2: Comparison of Euler’s integration and the Fourth-Order Runge-Kutta.

3.3 Implementation

With the equations of motion derived and numerical methods understood, we now combine the

pieces to formulate the final simulation in this subsection. We represent the state of the double
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pendulum using a state vector.

Y = [θ1, θ2, θ̇1, θ̇2] (3.25)

The time derivative of this vector, Ẏ, represents the slope.

Ẏ = [θ̇1, θ̇2, θ̈1, θ̈2] (3.26)

Variables θ̇1 and θ̇2 are already known from the state vector, but we will need to derive θ̈1 and θ̈2

from the Lagrangian equations of motion. We proceed as follows.

Isolate θ̈1 in equation (3.17). Do the same for θ̈2 in equation (3.22), which were the equations of

motion. This yields the following two equations for the second-order derivatives.

θ̈1 = −gm1 sin (θ1) + gm2 sin (θ1) + l2m2θ̈2 cos (θ1 − θ2) + l2m2θ̇
2
2 sin (θ1 − θ2)

l1 (m1 + m2)
(3.27)

θ̈2 =
−g sin (θ2) − l1θ̈1 cos (θ1 − θ2) + l1θ̇1

2
sin (θ1 − θ2)

l2
(3.28)

However, the expressions for θ̈1 and θ̈2 contain additional second-order derivatives, which are not

directly available from the state vector. To resolve this, we can substitute the expressions for θ̈1 and θ̈2

into each other, and then isolate the terms to obtain equations that express θ̈1 and θ̈2 solely in terms

of θ̇1, θ̇2, θ1, and θ2. This yields

θ̈1 =
2gm1 sin (θ1) + gm2 sin (θ1) + gm2 sin (θ1 − 2θ2)

2l1 (−m1 + m2 cos2 (θ1 − θ2) −m2)

+
l1m2θ̇

2
1 sin (2θ1 − 2θ2) + 2l2m2θ̇

2
2 sin (θ1 − θ2)

2l1 (−m1 + m2 cos2 (θ1 − θ2) −m2)
(3.29)

θ̈2 =
−gm1 sin (θ2) + gm1 sin (2θ1 − θ2) − gm2 sin (θ2) + gm2 sin (2θ1 − θ2)

2l2 (m1 −m2 cos2 (θ1 − θ2) + m2)

+
2l1m1θ̇

2
1 sin (θ1 − θ2) + 2l1m2θ̇

2
1 sin (θ1 − θ2) + l2m2θ̇

2
2 sin (2θ1 − 2θ2)

2l2 (m1 −m2 cos2 (θ1 − θ2) + m2)
(3.30)

Now, each variable in the slope approximation Ẏ can be expressed in values from the state vector,

with θ̈1 and θ̈2 coming from equations 3.29 and 3.30. Combining this with the RK4, we can simulate

the double pendulum’s motion at each discrete time interval.



12

For example, we can plot the angular displacements over time for some initial conditions, shown in

Figure 3.

Figure 3: Evolution of some θ1 and θ2.

To visualize the pendulum’s motion in the xy plane, we can plug the angles back into the trigono-

metric equations (equations 3.1 to 3.4). This gives a more visually realistic representation, as shown

in Figure 4. The gray trajectory shows the where paths that the second mass on the pendulum has

traversed.

Figure 4: Simulation of the double pendulum in the xy plane.
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To verify the correctness of our simulation, we evaluate the total energy of the system at each time

step by computing the sum of kinetic energy (Equation 3.10) and potential energy (Equation 3.11)

using the state vector variables. As exhibited in Figure 5, the total energy remains constant, indicating

the reliability of our simulation.

Figure 5: Total energy of the system over time.

The simulation is now complete, and the code can be found in appendix 9.

4 Lyapunov exponent

To investigate the relationship between drop angles and chaos, a quantitative measurement of chaos

is needed. This section aims to intuitively introduce the Lyapunov exponent, an indicator of chaos,

that measures the sensitivity of the system to initial conditions.

First, recall that chaotic systems are sensitive to initial conditions. We can use the simulation we

have derived to visually demonstrate how the double pendulum exhibits this trait. This can be done

by dropping two double pendulums with very close initial conditions.
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(a) Two double pendulums sepa-

rated by θ1 ± 0.01 radians. (b) After three seconds. (c) After ten seconds.

Figure 6: Two double pendulums’ trajectories over time.

The results are shown in Figure 6. From initial conditions of θ1 with separations of 0.01 radians,

indiscernible to the eye, to quickly being on different ends of the plane in only ten seconds. This

underscores the double pendulum’s pronounced sensitivity to initial conditions. A natural follow-up

question arises: Could we grasp a more quantitative measurement of how sensitive the system is to

compare the chaos between different initial conditions?

To further investigate, we plot the time evolution of the variable θ1 from the two double pendulums,

as shown in Figure 7. The angle trajectories appear to coincide initially, only to diverge significantly

over time. Is there a way to quantify this separation? Perhaps, how fast they diverge?
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Figure 7: Divergence of θ1 for two double pendulums with separation of initial conditions of 0.01

radians.

The answer is yes. We have stumbled upon the Lyapunov exponent. The Lyapunov exponent

serves as the quantitive indicator of how sensitive a system is to its initial conditions. It does this by

measuring the rate of divergence of variables of close initial conditions. However, this analysis needs

to be done on all variables, not just one (like our θ1). Phase space is the concept that enables us to

perform this multidimensional calculation. Let us grasp an understanding of phase space first before

continuing further with the Lyapunov exponent.

4.1 Phase Space

Phase space is a mathematical representation of all possible states of a physical system. It provides

a way to analyze the behavior of complex systems, such as the double pendulum. In this context, the

state vector (θ1, θ2, θ̇1, θ̇2) forms a four-dimensional phase space, where each dimension corresponds to

a system variable. Each point in this space represents a specific system state, with each axis specifying

a particular value for each variable.

To measure the separation of two points in phase space, we will need to find the Euclidean distance.
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The Euclidean distance between two points P = (x1, y1, . . . , z1) and Q = (x2, y2, . . . , z2) in an n-

dimensional space is given by:

d(P,Q) =
√

(x2 − x1)2 + (y2 − y1)2 + . . . + (z2 − z1)2 =

√√√√ n∑
i=1

(qi − pi)2

This calculation takes into account the multidimensional nature of our phase space. With the tools

we have learned so far, we can begin to define the Lyapunov exponent.

4.2 Defining the Lyapunov Exponent

Consider a dynamical system described by the differential equation dx
dt = f(x). Let xt be the state

of the system at time t, and let f t(x) denote the trace of iterating f t times. This evolution is called

a trajectory, or an orbit.

Suppose we have an initial condition x0 and a nearby initial condition x0 + u0, where u0 is a small

perturbation. We can iterate f to evolve these initial conditions, resulting in two trajectories that

diverge or converge over time. Let ut denote the Euclidean distance between these trajectories at time

t. Figure 8 illustrates the separation of trajectories and the change in ut.

f t(x0 + u0)

f t(x0)

u0

ut = u0 · eλt

Figure 8: Separation of two trajectories with closeby initial conditions.

This growth or decay of ut can be modeled by the exponential equation

ut = u0 · eλt (4.1)

In this equation, λ is the Lyapunov exponent. The larger the value of the exponent is, the faster
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the rate of divergence. We can isolate λ by dividing both sides by d(t0), taking the natural logarithm,

and dividing by t:

ut = u0 · eλt (4.2)

ut

u0
= eλt (4.3)

ln

(
ut

u0

)
= λt (4.4)

λ =
1

t
ln

(
ut

u0

)
(4.5)

In this form, the Lyapunov exponent can be calculated using the initial separation and final separation.

Furthermore, we can categorize the values of the Lyapunov exponent and describe what they reveal

about the initial conditions of a dynamical system [Elert, 2010].

• λ > 0: Since there is exponential growth, initial conditions are extremely sensitive, with even

infinitesimally small variations leading to drastically different outcomes. This extreme sensitivity

is a hallmark of chaotic behavior, and even minute errors in initial angle, angular velocity, or

other parameters can result in drastically different trajectories.

• λ < 0: Since there is exponential decay, the system is not sensitive to initial conditions, with

trajectories starting from slightly different initial conditions converging to a fixed point or orbit.

This characteristic is typical of dissipative or non-conservative systems, where energy is lost over

time.

• λ = 0: There is neither growth or decay. The system exhibits stable, periodic behavior, with

the separation between initially close trajectories remaining constant. This scenario arises when

the system’s frequencies are amplitude-independent, as observed in ideal harmonic oscillators.

The magnitude of the exponent reveals how fast the separation or convergence is. To provide

context, below are the Lyapunov exponents for different systems. The Lorenz system that kickstarted
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the branch of chaos had a Lyapunov exponent of 0.9 [Viswanath, 2007], and another famous chaotic

system, the Henon map, has a Lyapunov exponent of 0.69 [Viswanath, 2007].

5 Numerical Simulation

Finally, with an understanding of the Lyapunov exponent as well as having derived the double

pendulum, this section combines both to outline the methodology for finding the Lyapunov exponent

for different initial conditions.

Following the definition of the Lyapunov exponent outlined in the previous section, the intuitive

method to find the Lyapunov exponent goes as follows: Start with two nearby initial conditions, evolve

them over time, and find how the separation changes over time to plug into the Lyapunov equation.

However, this method has one key limitation. Due to the physically constrained environment that

the double pendulums are in, there is an upper bound on the divergence of the variables. As a

result, their growth apart will be limited, leading to an underestimation of the Lyapunov exponent

[Wolf et al., 1985].

To account for these limitations, [Sprott, 1997] came up with the methodology of drawing the

trajectories closer together immediately after measuring the separation, preventing the trajectories

from running into a limitation. Let us formally define this with this procedure.

1. Choose an initial condition as the fiducial trajectory starting point and a nearby initial condition

as the non-fiducial trajectory starting point. Let their separation be u0.

2. Evolve both trajectories for a selected period. For this simulation, the period used is 1 second, to

balance between finding small separations and mitigating the underestimation of the Lyapunov

exponent in running into physical boundaries.

3. Calculate the final separation, then use equation (4.5) to obtain the maximum Lyapunov expo-

nent at that point.
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4. Adjust the non-fiducial orbit to converge towards the fiducial orbit, eliminating the restrictive

effect of physical barriers. The relocation of trajectories is as follows: Suppose x is a variable in

the state vector. Let orbit a be the fiducial trajectory with x = xa0, and orbit b be the adjusted

trajectory with x = xb0. When orbit b is drawn back, the state new variable xb1 is reinitialized

to:

xb1 = xa0 +
u0

ut
(xb0 − xa0).

This equation is derived from [Sprott, 1997]. Repeat this process for every variable in the state

vector.

5. We will repeat steps 2-4 for 30 seconds for every initial condition, adjusting the non-fiducial

trajectory as the fiducial trajectory evolves. The final Lyapunov exponent will be the average

Lyapunov exponent over the entire trajectory.

d0

d0

d1

fidu
cia

l orb
it

no
n-

fid
uc

ia
l or

bi
t

d1
d0

d1

Figure 9: Schematic of the Lyapunov exponent calculation.

A schematic representing this entire process can be seen in Figure 9. By adjusting the fiducial

orbit, we effectively mitigate the effects of physical barriers in calculating the Lyapunov exponent. We

can incorporate the concept of the average onto the definition of the Lyapunov exponent from equation

(4.5) by dividing the sum of all Lyapunov exponents by the total number of exponents.

λ =
1

n

n∑
i=1

1

t
ln

(
ui

ui−1

)
(5.1)
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Further simplifying, the value for the change in time, 1
t , is factored out of the summation. Multi-

plying this value with the number of iterations, 1
n , returns the reciprocal of the total time, which we

will denote as 1
T . This gives us

λ =
1

n

1

t

n∑
i=1

ln

(
ui

ui−1

)

=
1

T

n∑
i=1

ln

(
ui

ui−1

)
(5.2)

We now obtained and understand all of the tools required to find the Lyapunov exponent of each

drop angle of a double pendulum.

6 Results

This section presents the results of our investigation into the double pendulum’s chaotic behavior,

using the methodology outlined previously.

The heatmap in Figure 10 shows the Lyapunov exponents for the double pendulum with varying

initial drop angles θ1 and θ2, each ranging from 0 to 2π radians. The x-axis and y-axis represent the

drop angles of θ2 and θ1, respectively, with a resolution of 1260 × 1260 (calculating the Lyapunov

exponent for 1,587,600 values). The color scheme ranges from dark red (low, near-zero Lyapunov

exponents) to white (high Lyapunov exponents, maximum of 2.358).
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Figure 10: Heatmap of the Lyapunov exponent at different drop angles.

The heatmap uncovers the answer to the research question, of how the initial conditions affect the

onset of chaos. Drop angles that yield bright spots are chaotic, while drop angles that yield dark spots

are periodic. Notice how the heatmap is mirrored at the line θ1 = π. This is because the double

pendulum is symmetric around the vertical axis, and θ1 from π to 2π is a reflection of θ1 from 0 to π.

This means that analysis of the bottom half applies to the top half as well. We will now analyze what

the heatmap of Lyapunov exponents reveals about the relationship between drop angles and chaos.

First, notice the concentration of lower Lyapunov exponents at the corners of the heatmap, where

the drop angle is low (2π is a low drop angle as the pendulum does a circle to the other side). Plotting

the double pendulum with parameters from these regions (Figure 11), we see it resembles a single

pendulum. Notice that these orbits are periodic, corresponding to their low Lyapunov exponents.
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(a) Initial conditions. (b) After ten seconds. (c) After thirty seconds.

Figure 11: Low angle drop with θ1 = 1.078 radians, θ2 = 1.173 radians, and λ ≈ 0.104.

We move closer to the centre, to the intermediate point between the periodic corners and chaotic

centres. Notice the dark patch of Lyapunov exponents that protrude from the bottom corner. There

is a harsh border between this patch and the bright, higher Lyapunov exponents. We examine two

trajectories from either side of this border, differing by only 0.01 radians in their initial drop angle of

θ2. These are shown in Figure 13a and Figure 13b.

Figure 12: The dark patch of low Lyapunov exponents bordering the chaotic region.
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(a) Periodic orbit. θ1 ≈ 2.021 radi-

ans, θ2 ≈ 1.637 radians, λ ≈ 0.245

(b) Chaotic orbit. θ1 ≈ 2.021 radi-

ans, θ2 ≈ 1.647 radians, λ ≈ 1.381

Figure 13: Two double pendulums with initial conditions on the chaotic and periodic side of the dark

patch.

The difference in these two trajectories only after thirty seconds demonstrates the sensitivity to

initial conditions in the double pendulum. Notice the chaotic orbit initially had traces of swinging like

a single pendulum, evident from the gray streaks. However, it quickly decayed into chaos. This stark

contrast in behavior, triggered by a mere 0.01-radian difference in initial conditions, marks the border

beyond which chaos emerges.

Moving further towards to centre, where θ1 ≈ π and θ2 ≈ π, yields higher Lyapunov exponents.

These drop angles produce patterns that are more chaotic, shown in Figure 14.
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(a) Initial conditions. (b) After ten seconds. (c) After thirty seconds.

Figure 14: High angle drop that is chaotic, with θ1 ≈ 3.439 radians, θ2 ≈ 2.630 radians, and λ ≈ 2.161.

We have now visually observed the trend of higher drop angles leading to higher degrees of chaos.

However, due to the double pendulum’s chaotic nature, there are notable regions on the map that

punctuate this trend. In the high-angle drop angles, where there is expected chaos, lie regions of dark

spots — low Lyapunov exponents. Some of these spots are shown in Figure 15.

Figure 15: Heatmap origins of high angle periodic orbits, or dark spots in regions of high Lyapunov

exponents.
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We proceed by examining the outcomes of these initial conditions. The resulting patterns are

noteworthy for their unexpected periodicity in regions where chaotic behavior is anticipated. Notice

that the trajectories repeat each other, going back on the same trajectories to make the same pattern.

There exists an exhaustive list of these stable orbits. A selection of the most intriguing cases is

exhibited in the following figures. Figures 16 and 17 demonstrate the patterns at intervals of zero, ten

and thirty seconds to showcase the evolution of the periodic orbits.

(a) Initial conditions. (b) After ten seconds. (c) After thirty seconds.

Figure 16: High angle drop that is periodic, with θ1 ≈ 2.900 radians, θ2 ≈ 1.911 radians, and λ ≈ 1.911

(a) Initial conditions. (b) After ten seconds. (c) After thirty seconds.

Figure 17: High angle drop that is periodic, with θ1 ≈ 2.331 radians, θ2 ≈ 3.269 radians, and λ ≈ 0.158.

The following figure shows more periodic orbits and their final patterns.
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(a) Hook shape. θ1 ≈ 1.602 radi-

ans, θ2 ≈ 6.193 radians, λ ≈ 0.200.

(b) Tunnel. θ1 ≈ 0.679 radians,

θ2 ≈ 4.836 radians, λ ≈ 0.174.

(c) Loops. θ1 ≈ 0.838 radians, θ2 ≈

4.801 radians, λ ≈ 0.135.

(d) Asymmetric. θ1 ≈ 1.048 radi-

ans, θ2 ≈ 4.292 radians, λ ≈ 0.178.

(e) Flower shape. θ1 ≈ 2.725 radi-

ans, θ2 ≈ 4.442 radians, λ ≈ 0.089.

(f) Cat whiskers. θ1 ≈ 1.757 radi-

ans, θ2 ≈ 5.784 radians, λ ≈ 0.216.

Figure 18: High-angle periodic patterns.

Moreover, some of these dark regions are just one pixel of the heatmap. That means any slight

deviation of initial drop angles will yield a chaotic system.
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(a) Initial conditions. (b) After ten seconds. (c) After thirty seconds.

Figure 19: High angle drop that is periodic, with θ1 ≈ 1.906 radians, θ2 ≈ 5.764 radians, and λ ≈ 0.252.

(a) Initial conditions. (b) After ten seconds. (c) After thirty seconds.

Figure 20: Nearly the same drop angle as in Figure 19, except variance in θ1 by 0.002 radians. The

result after 10 seconds is similar at first but quickly decays into chaos in the next 30 seconds. In fact,

the Lyapunov exponent for this drop angle is 1.118.

Overall, this heatmap encapsulates the chaotic nature of the double pendulum, showing its sensi-

tivity to initial conditions — tiny fluctuations in the initial conditions making the difference between

chaotic and periodic trajectories.
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7 Conclusion

Our investigation into the double pendulum’s nonlinear dynamics has yielded a comprehensive

understanding of the relationship between initial conditions and chaotic behavior. The Lyapunov

exponent heatmap provides a visual representation of the system’s sensitivity to initial drop angles,

revealing the unpredictable dynamic between these parameters and the onset of chaos. Notably, our

results show a general trend of increasing chaotic behavior with higher drop angles. Nonetheless, this

pattern is punctuated by regions of periodic orbits at high-angle drops, underscoring the chaos that

lies in the dynamic system of a double pendulum.

However, this study has several limitations. The heatmap’s applicability is restricted to its specific

pendulum condition: 1-meter lengths, 1-kg point masses, and a frictionless environment. Additionally,

the orbits are not truly periodic, as they inevitably deviate into chaos. Specifically, the Lyapunov expo-

nent calculations are only valid for the 30-second simulation duration; extending the simulation reveals

behavior that is unaccounted for during the calculation of the Lyapunov exponent. We demonstrate

this by allowing one of the periodic trajectories outlined in Figure 17 for a longer duration.

(a) Initial conditions. (b) After thirty seconds. (c) After two hundred seconds.

Figure 21: Triple ring periodic trajectory from Figure 17 decaying into chaos.

The trajectory’s rapid descent into chaos underscores the heatmap’s limited validity, which is

confined to a short duration.
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Furthermore, if we refer back to Figure 2, we see the numerical integrator we used may not provide

perfectly accurate results, as it only provides predictions at discrete time intervals — unlike the con-

tinuous process in reality. These outlined limitations are important to consider when evaluating this

study’s results over extended periods.

Notwithstanding these limitations, our study yields valuable insights and meaningful conclusions.

It beckons us to confront the inherent limitations of predictability in complex systems. It challenges

our deterministic intuition, inviting us to grapple with the inherent uncertainties that underlie the

seemingly deterministic world we inhabit. If the addition of one pendulum onto another can create

such unpredictable chaos, what about the world around us?

Perhaps these mathematical ideas stemming from chaos theory provide insight into the way we

should approach life. There is only so much we can know about the initial conditions and parameters

of our lives. So in a world where the conditions are more complex than a double pendulum, is it

worthwhile to have worries that extend beyond what is predictable? That is one of the key lessons

that chaos theory can teach us. The sensitivity to initial conditions demonstrated by the Lyapunov

exponent in a double pendulum reflects the valleys of unpredictableness around us.
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9 Appendix

Code For Double Pendulum

import numpy as np

from math import cos , s in , p i

import pygame

import sys

def G(y , t ) :

theta1 , theta2 , omega1 , omega2 = y

f1 = omega1

f2 = omega2

f3 = (−g ∗ (2 ∗ m1 + m2) ∗ s i n ( theta1 ) − m2 ∗ g ∗ s i n ( theta1 − 2

∗ theta2 ) − 2 ∗ s i n ( theta1 − theta2 ) ∗ m2 ∗ ( f 2 ∗∗2 ∗ l 2 + f1

∗∗2 ∗ l 1 ∗ cos ( theta1 − theta2 ) ) ) / ( l 1 ∗(2∗m1 + m2 − m2 ∗ cos

(2∗ theta1 − 2∗ theta2 ) ) )

f 4 = (2 ∗ s i n ( theta1−theta2 ) ∗ ( f 1 ∗∗ 2 ∗ l 1 ∗ (m1 + m2) + g∗ (m1

+ m2) ∗ cos ( theta1 ) + f2 ∗∗2 ∗ l 2 ∗ m2 ∗ cos ( theta1− theta2 ) ) )

/ ( l 2 ∗ (2 ∗ m1 + m2 − m2 ∗ cos (2∗ theta1 − 2∗ theta2 ) ) )

return np . array ( [ f1 , f2 , f3 , f 4 ] )

def RK4 step (y , t , dt ) :

k1 = G(y , t )

k2 = G( y+0.5∗k1∗dt , t +0.5∗ dt )

k3 = G( y+0.5∗k2∗dt , t +0.5∗ dt )

k4 = G( y+k3∗dt , t+dt )
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return dt ∗ ( k1 + 2∗k2 + 2∗k3 + k4 ) /6

def energy ( y ) :

theta1 , theta2 , omega1 , omega2 = y

T = 0.5∗ (m1 + m2) ∗ l 1 ∗∗2 ∗ omega1∗∗2 + (m2/2) ∗ l 2 ∗∗2 ∗ omega2

∗∗2 + m2∗ l 1 ∗ l 2 ∗omega1∗omega2∗ cos ( theta1−theta2 )

U = − (m1+m2) ∗ l 1 ∗g∗ cos ( theta1 ) − m2∗ l 2 ∗g∗ cos ( theta2 )

return T + U

def update ( a1 , a2 ) :

s c a l e = 200 ∗ (2 / ( l 1 + l 2 ) )

x1 = l 1 ∗ s c a l e ∗ s i n ( a1 ) + o f f s e t [ 0 ]

y1 = l 1 ∗ s c a l e ∗ cos ( a1 ) + o f f s e t [ 1 ]

x2 = x1 + l 2 ∗ s c a l e ∗ s i n ( a2 )

y2 = y1 + l 2 ∗ s c a l e ∗ cos ( a2 )

return ( x1 , y1 ) , ( x2 , y2 )

def render ( point1 , po int2 ) :

s c a l e = 15

x1 , y1 , = int ( po int1 [ 0 ] ) , int ( po int1 [ 1 ] )

x2 , y2 , = int ( po int2 [ 0 ] ) , int ( po int2 [ 1 ] )

i f prev po in t :

xp , yp = prev po in t [ 0 ] , p r ev po in t [ 1 ]
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pygame . draw . l i n e ( trace , TRAILCOLOUR, (xp , yp ) , ( x2 , y2 ) , 3)

s c r e en . f i l l (WHITE)

sc r e en . b l i t ( t race , ( 0 , 0 ) )

pygame . draw . l i n e ( screen , BLACK, o f f s e t , ( x1 , y1 ) , 5)

pygame . draw . l i n e ( screen , BLACK, ( x1 , y1 ) , ( x2 , y2 ) , 5)

pygame . draw . c i r c l e ( screen , BLACK, o f f s e t , 8)

pygame . draw . c i r c l e ( screen , COLOUR1, ( x1 , y1 ) , int (m1∗ s c a l e ) )

pygame . draw . c i r c l e ( screen , COLOUR2, ( x2 , y2 ) , int (m2∗ s c a l e ) )

return ( x2 , y2 )

# va r i a b l e s

m1, m2 = 1 . 0 , 1 . 0

l1 , l 2 = 1 . 0 , 1 . 0

g = 9.81

w, h = 850 , 850

WHITE = (255 ,255 ,255)

BLACK = (0 , 0 , 0 )

COLOUR1 = (13 , 23 , 219)

COLOUR2 = (13 , 23 , 219)

TRAILCOLOUR = (230 ,230 ,230)

o f f s e t = (h/2 , w/2)

prev po in t = None
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sc r e en = pygame . d i s p l a y . set mode ( (w, h) )

s c r e en . f i l l (WHITE)

t r a c e = sc r een . copy ( )

pygame . d i s p l a y . update ( )

c l o ck = pygame . time . Clock ( )

d e l t a t = 0 .01 # increment

totalTime = 100

t = 0

time = np . arange (0 , totalTime , d e l t a t )

# i n i t i a l s t a t e

i n i t i a l = np . array ( [ 3 . 7 , 2 . 011 , 0 , 0 ] )

pygame . f ont . i n i t ( )

myfont = pygame . f ont . SysFont ( ’ Comic  Sans  MS’ , 38)

an imat i on s ta r t ed = False

i n i t i a l = np . array ( [ 3 . 7 , 2 . 011 , 0 , 0 ] )

while True :

for event in pygame . event . get ( ) :

i f event . type == pygame .QUIT:

sys . e x i t ( )

point1 , po int2 = update ( i n i t i a l [ 0 ] , i n i t i a l [ 1 ] )

p r ev po in t = render ( point1 , po int2 )

t += d e l t a t
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i n i t i a l = i n i t i a l + RK4 step ( i n i t i a l , t , d e l t a t )

c l o ck . t i c k (60)

pygame . d i s p l a y . update ( )

Lyapunov Exponent Calculator

import numpy as np

from numpy . l i n a l g import inv

from matp lo t l i b import pyplot as p l t

from math import cos , s in , p i

def G(y , t ) :

a1d , a2d = y [ 0 ] , y [ 1 ]

a1 , a2 = y [ 2 ] , y [ 3 ]

m11 , m12 = (m1+m2) ∗ l1 , m2∗ l 2 ∗ cos ( a1−a2 )

m21 , m22 = l 1 ∗ cos ( a1−a2 ) , l 2

m = np . array ( [ [ m11 , m12 ] , [ m21 , m22 ] ] )

f 1 = −m2∗ l 2 ∗a2d∗a2d∗ s i n ( a1−a2 ) − (m1+m2) ∗g∗ s i n ( a1 )

f 2 = l 1 ∗a1d∗a1d∗ s i n ( a1−a2 ) − g∗ s i n ( a2 )

f = np . array ( [ f1 , f 2 ] )

a c c e l = inv (m) . dot ( f )
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return np . array ( [ a c c e l [ 0 ] , a c c e l [ 1 ] , a1d , a2d ] )

def RK4 step (y , t , dt ) :

k1 = G(y , t )

k2 = G( y+0.5∗k1∗dt , t +0.5∗ dt )

k3 = G( y+0.5∗k2∗dt , t +0.5∗ dt )

k4 = G( y+k3∗dt , t+dt )

return dt ∗ ( k1 + 2∗k2 + 2∗k3 + k4 ) /6

def perturb ( di , d f ) :

for i in range (4 ) :

perturbed [ i ] = i n i t i a l [ i ] + ( ( d i ∗ ( perturbed [ i ] − i n i t i a l [ i

] ) ) / df )

return perturbed

def lyapunov ( i n i t i a l , perturbed ) :

d i s t a n c e I n i t i a l = np . l i n a l g . norm( perturbed− i n i t i a l )

d i s t a n c e F i n a l = np . l i n a l g . norm( perturbed− i n i t i a l )

return np . l og (abs ( d i s t a n c e F i n a l / d i s t a n c e I n i t i a l ) ) , i n i t i a l ,

perturbed

def lyapunovTime ( di , d f ) :

return np . l og (abs ( df / d i ) )
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def r e s e t ( i n i t i a l ) :

perturb = [ None ]∗4

# va r i a b l e s

m1, m2 = 1 , 1

l1 , l 2 = 1 . 0 , 1 . 0

g = 9.81

d e l t a t = 0 .01 # increment

totalTime = 100

time = np . arange (0 , totalTime , d e l t a t )

# i n i t i a l s t a t e

i n i t i a l = np . array ( [ 0 , 0 , p i /1 .3 ,3∗ pi / 4 ] ) # [ v e l o c i t y , d i sp lacement ]

perturbed = np . array ( [ 0 , 0 , p i /1 .3 + 0 .001 ,3∗ pi / 4 ] ) # [ v e l o c i t y ,

d i sp lacement ]

lyapunovExponents = [ ]

d i s t a n c e T i m e I n i t i a l = d i s t a n c e I n i t i a l = np . l i n a l g . norm( perturbed−

i n i t i a l )

d i v i s o r = 2

# time−s t e pp ing s o l u t i o n

counter = 0

for t in time :

counter = counter + 1

d i s t a n c e I n i t i a l = np . l i n a l g . norm( perturbed− i n i t i a l )
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perturbed = perturbed + RK4 step ( perturbed , t , d e l t a t )

i n i t i a l = i n i t i a l + RK4 step ( i n i t i a l , t , d e l t a t )

d i s t a n c e F i n a l = np . l i n a l g . norm( perturbed− i n i t i a l )

i f counter % d i v i s o r == 0 :

l e = lyapunovTime ( d i s t a n c e T i m e I n i t i a l , d i s t a n c e F i n a l )

lyapunovExponents . append ( l e )

print ( l e )

perturbed = perturb ( d i s t a n c e T i m e I n i t i a l , d i s t a n c e F i n a l )

d i s t a n c e I n i t i a l = d i s t a n c e F i n a l

f ina lExponent = np .sum( lyapunovExponents ) ∗ (1/( totalTime ) )

print ( ”The  f i n a l  exponent  i s . . . ” )

print ( f ina lExponent )


